2017广东社区工作者数量关系考点:抽屉问题知识点储备

2017-07-17 09:52:06   来源:    点击:
加入收藏 打印文章

社区工作者:社区工作者行测的掌握是部分地区社区招聘的重点考察内容,因此掌握社区行测的知识技巧也是十分必要的,广东中公教育社区工作者考试网根据社区工作招聘行测特点,为大家整理了一下内容,供大家参考学习。本文为广大参加备考社区工作者的考试提供2017年广东社区工作者招聘公告!更多广东社区工作者考试信息,请点击广东社区工作者考试网


2017广东社区工作者交流群:219372968(点击即可加群)

抽屉原理概述

抽屉原理,又叫狄利克雷原理,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果。许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决。那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起。

将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放。这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果。虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果。

如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。

在数学运算中,考查抽屉原理问题时,题干通常有“至少……,才能保证……”这样的字眼。

我们下面讲述一下抽屉原理的两个重要结论:

①抽屉原理1

将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2。(也可以理解为至少有2件物品在同一个抽屉)

②抽屉原理2

将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。(也可以理解为至少有m+1件物品在同一个抽屉)


1 2
[责任编辑:珠海中公教育]